
13 Functional series. Uniform convergence

For Augustin-Louis Cauchy the main starting point in the analysis of holomorphic functions was
differentiability, and as a consequence, the integral property. Bernhard Riemann has a much more
geometric point of view and, along with differentiability, started with the property of being conformal.
There was yet another point of view, in particular promoted by Karl Weierstrass (1815–1897), who
looked at the complex analysis from the point of view that “nice” functions are those that can be
represented as convergent power series. In this lecture I present the necessary background with the
ultimate goal to see how it is possible to obtain one more characterization of holomorphic functions.

13.1 Functional series and sequences

In one of the previous lectures I already introduced complex sequences and series and discussed a
little their convergence, mainly referring to your Calc II experience. I needed it to rigorously define
complex exponent and deduce its properties. Here I will be more detailed.

I will be studying the series of the form

g0(z) + g1(z) + . . .+ gn(z) + . . . , (13.1)

where
gn : E −→ C,

are the functions defined on the same domain E. My goal to make sense of the expression g0(z) +
g1(z) + . . .+ gn(z) + . . . = g(z) for some g : E −→ C.

Together with the series (13.1) I consider a sequence of functions (fn)
∞
n=0, fn : E −→ C, where

each fn is the partial sum of (13.1):

fn(z) = g0(z) + . . .+ gn(z).

In general, sequences and series are the same object looked at from two different perspectives;
specifically, given a series of the form (13.1), I can always consider its sequence of partial sums,
in the opposite direction, if I deal with a sequence (fn) I can construct the series (13.1) by setting
g0(z) = f0(z), gn(z) = fn(z)−fn−1(z). So all the definitions below can be stated both in the language
of sequences and series, please carefully check to which object a given definition applies.

Definition 13.1. Let (fn)
∞
n=0 be a sequence of functions, fn : E −→ C for all n. It is said that this

sequence converges pointwise to the function f : E −→ C if for any ϵ > 0 and any z ∈ E there is a
natural number N ∈ N (which can depend on both ϵ and z), such that for all n ≥ N

|fn(z)− f(z)| < ϵ.

Similarly,

Definition 13.2. Series (13.1) converges pointwise to the function f : E −→ if for any ϵ > 0 and
z ∈ E there exists N ∈ N, such that

|g0(z) + g1(z) + . . .+ gn(z)− f(z)| < ϵ

for all n ≥ N .
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So the notion of pointwise convergence is simply carrying to the functional series the definition of
convergence of numerical series: fix z, get a numerical series, discuss the convergence. We already had
this example, let me recall it again.

Example 13.3. Let fn(z) = zn. Then the sequence (fn) converges pointwise to 0 if |z| < 1, diverges
to ∞ if |z| > 1, converges to 1 if z = 1, and has no limit if |z| = 1, z ̸= 1.

Now I can consider my fundamental example for series.

Example 13.4 (Geometric series). The series of the form

1 + z + z2 + . . .+ zn + . . .

is called geometric. I claim that this series converges pointwise to 1/(1− z) if |z| < 1 and diverges if
|z| ≥ 1.

Here I get this conclusion by explicitly considering the sequence of partial sums:

f0(z) = 1,

f1(z) = 1 + z,

f2(z) = 1 + z + z2,

. . .

fn(z) = 1 + z + . . .+ zn =
1− zn+1

1− z
, z ̸= 1,

where the last formula can be proved by multiplying both sides of equality by 1− z. Now∣∣∣∣fn(z)− 1

1− z

∣∣∣∣ = |z|n+1

|1− z|
.

I have that if |z| < 1 then taking N =
⌊
ln(ϵ|1−z|)

ln |z|

⌋
does the rick to prove the pointwise convergence. If

z = 1 my series is clearly divergent, if |z| > 1 |z|n goes to infinity and hence the series diverge, finally,
if |z| = 1, z ̸= 1, zn travels on the unit circle and hence there is no limit.

Once again, to emphasize its importance,

1 + z + z2 + . . .+ zn + . . . =
1

1− z
, |z| < 1,

where the convergence understood pointwise.

Recall that I talked about convergence of numerical series, say c0+c1+. . .+cn+. . ., I also discussed
the notion of absolute convergence. Namely, series

∑∞
n=0 cn converges absolutely if the series

∑∞
n=0 |cn|

with non-negative terms converges. Absolute convergence is a more stringent property than simple
convergence.

Proposition 13.5. An absolutely convergent series converges.

Proof. �
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The converse is not true, i.e., there are series that converge but without absolute convergence. Such
series are called conditionally convergent and they have a somewhat strange nonintuitive behavior;
e.g., by rearranging the terms of a series I can guarantee that the sum will be equal to any specified
number. In order not to deal with such strange behavior, I will be discussing only absolutely convergent
series.

Example 13.6. The geometric series converges absolutely to 1/(1 − z) for any |z| < 1. Indeed, if
|z| < 1 then, to test the absolute convergence, I consider

1 + |z|+ |z2|+ . . . = 1 + |z|+ |z|2 + . . . = 1 + r + r2 + . . . =
1

1− r
,

where r = |z|, and therefore for each fixed z ∈ (0, 1) the series converges absolutely.

13.2 Uniform convergence

As natural as it may seem, pointwise convergence is a complicated form of convergence. Instead, I
will concentrate on something more natural (the meaning of this “natural” will be clear later).

Definition 13.7. Let (fn)
∞
n=0, fn : E −→ C be a sequence of functions. It is said it converges

uniformly to f : E −→ C if for any ϵ > 0 there exists a natural number N ∈ N (which may depend on
ϵ), such that

|fn(z)− f(z)| < ϵ

for all n ≥ N and all z ∈ E.

The key difference with the pointwise convergence is that now ϵ does not depend on a particular
point z, it must work uniformly for all possible z. This observation indicates that if a sequence
converges uniformly, it converges pointwise, but the converse may not be true.

Example 13.8. The sequence (fn), fn(z) = zn does not converge uniformly on |z| < 1. Let me prove
this fact by contradiction. Assume that it does converge to 0 uniformly on the whole disk |z| < 1.
That is, for arbitrary ϵ I can find N , such that

|zn − 0| = |zn| = |z|n < ϵ

for all n ≥ N and all z ∈ B(0, 1). On another hand, I have, since rN is a continuous function with
fixed N , that

lim
|z|→1−0

|z|N = lim
r→1−0

rN = 1.

That is, for each fixed ϵ I am able to find z with |z| < 1 and |z|N as close to 1 as I wish, which
contradicts the inequality rN < ϵ for ϵ strictly less than 1.

However, if I lighten my condition a little, I can show that sequence (zn) converges uniformly to
1/(1− z) for any |z| ∈ [0, r), where r < 1 and fixed. Indeed, fix r ∈ [0, 1) and ϵ > 0. Note that |z| ≤ r
then ln |z| ≤ ln |r| and 1/ ln |z| ≥ 1/ ln r. Take N =

⌊
ln ϵ
ln r

⌋
+1. Due to the discussed inequalities for

any z such that |z| ≤ r it will be true that

|z|n < ϵ,

for any n ≥ N , which proves the uniform convergence.
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Similarly,

Definition 13.9. Series (13.1) converges uniformly to f if for any ϵ > 0 there is N ∈ N such that

|g0(z) + g1(z) + . . .+ gn(z)− f(z)| < ϵ

for all n ≥ N and all z ∈ E.

Example 13.10. As it should be intuitively expected the geometric series does not converge uniformly
on |z| < 1. However, it does converge uniformly in any ball B(0, r) with r < 1 fixed. The details are
left as an exercise.

So, what is so special about the uniform convergence? Here are the main points.

Proposition 13.11. Let (fn) converge uniformly on E to f . If fn are continuous on E so is f .

Proof. So, I need to show that for any fixed z0 ∈ E and any given ϵ > 0 there is δ > 0 such that

|f(z)− f(z0)| < ϵ

if |z − z0| < δ, assuming that all such z ∈ E.
Now

|f(z)− f(z0)| = |f(z)− f(z0) + fn(z)− fn(z) + fn(z0)− fn(z0)| ≤

≤ |f(z)− fn(z)|+ |f(z0)− fn(z0)|+ |fn(z)− fn(z0)| =
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ,

where first two terms are less than epsilon due to uniform convergence, and the third due to continuity
of fn. �

Remark 13.12. This proposition sometimes allows to check easily that convergence is not uniform.
For instance, consider a sequence (xn), x ∈ [0, 1]. This sequence converges pointwise on this interval
to the function that is equal to 0 if 0 ≤ x < 1 and to 1 if x = 1, which is a discontinuous function.
Therefore, the convergence cannot be uniform (note that all xn are continuous).

Corollary 13.13. If (13.1) converges uniformly to f on E and all gn are continuous so is f .

Remark 13.14. In essence, uniform convergence of a series with continuous terms means that one
can interchange the limits (recall that f is continuous at z0 if limz→z0 f(z) = f(limz→z0 z) = f(z0)):

f(z0) = lim
z→z0

f(z) = lim
z→z0

lim
n→∞

fn(z) = lim
n→∞

lim
z→z0

fn(z) = lim
n→∞

fn( lim
z→z0

z) = lim
n→∞

fn(z0) = f(z0).

Since operations of differentiation and integration are limits, it indicates that for the series that
converge uniformly, these operations can be performed termwise.

Proposition 13.15. Let (fn) converge to f uniformly on E, fn are continuous, and γ ⊆ E is a path.
Then

lim
n→∞

∫
γ
fn =

∫
γ
lim
n→∞

fn =

∫
γ
f.
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Proof. By recalling the ML–inequality the proof is immediate:∣∣∣∣∫
γ
fn −

∫
γ
f

∣∣∣∣ = ∣∣∣∣∫
γ
(fn − f)

∣∣∣∣ ≤ max
z∈γ

|fn(z)− f(z)|L,

where L is the length of γ. Since convergence is uniform, it is true that for sufficiently large n and all
z ∈ E

|fn(z)− f(z)| < ϵ

L
,

therefore ∣∣∣∣∫
γ
fn −

∫
γ
f

∣∣∣∣ < ϵ,

which concludes the proof. �

Corollary 13.16. Let (13.1) converge uniformly to f on E and γ ⊆ E then∫
γ
f =

∫
γ

∑
gn =

∑∫
γ
gn,

i.e., for a uniformly convergent series one is allowed to interchange the order of integration and
summation.

Finally, sometimes one needs a simple condition to check uniform convergence. Here is one of the
most useful criteria.

Proposition 13.17 (Weierstrass M-test). Consider (13.1) and assume that |gk(z)| ≤ Mk for some
constants Mk. Moreover, assume that

∑∞
k=0Mk converges. Then both

∑∞
k=0 |gk(z)| and

∑∞
k=0 gk(z)

converge uniformly on E.

Remark 13.18. In this case it is said, a little confusingly, that the series converges absolutely and
uniformly. The confusion stems from the fact that if a series converges absolutely, and the same
converges uniformly, we still cannot conclude that the series converges absolutely and uniformly as
expected. But these subtle points will not bother us here.

Proof. See the textbook. �
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